
Set R© Card Game Solver using Image Processing
Techniques on Smart-Phone Photos

Fernando San Martı́n Jorquera
School of Electrical and
Computer Engineering
University of Houston

Houston, Texas 30332–0250
Email: fsanmartinjorquera@uh.edu

Amanda Legge
Website: www.amandalegge.me

Email: legge.amanda@gmail.com

Abstract—Some authors have already shown the feasibility
of regular playing card recognition. Here, a different type of
card game, called Set R©, is used. With MatLab’s image toolbox
we were able to detect each of the four features (color, shape,
shading, and amount) required to correctly classify the cards in
the game. A great performance was achieved by the classifier,
suggesting the possibility of a mobile application, or a similar
system for anti-cheating systems in casinos, for example.

I. INTRODUCTION

Some attention has been given to systems that detect
images of regular cards in games such as poker and blackjack
(mainly motivated by casino’s anti-cheating systems), but other
card games remain unexplored. Such systems based on image
recognition to detect cards on a table usually rely on border
recognition to detect the boundaries of cards. Then, once the
borders are detected, the corners of each card are extracted
from the photo and matched with a template.

For this paper we analyze a different type of card game
called Set. The cards for this game differ from those of a reg-
ular card deck in terms of both number of cards and features.
The Set deck contains 81 unique cards, unlike a normal deck
which contains only 52. Furthermore, there are more features
to detect in Set (color, shape, amount, and shading) than in
regular playing cards (number and suit). Although it is true
that regular playing cards have color features (red and black),
this information is redundant because the suit of a card reveals
the color (i.e. hearts and diamonds are red; clubs and spades
are black). For this reason, the regular playing card recognition
systems use a gray-scale image to simplify the process. This
type of simplification, however, is not possible in Set, as the
color information is required.

The solution to the problem of identifying all four features
in Set, including both color and shading, could be used to build
a mobile application that could solve the game from a single
image. Furthermore, the same principles used to recognize
shading and color could be applied to other systems to ensure
a more reliable analysis. In playing card games like blackjack,
for example, in the case of overlapping cards (in which the suit
of the only revealed corner of a card cannot be recognized with
100% accuracy), taking the color into account might enable
suit identification by using the process of elimination (i.e. a
large rounded edge can only be a heart or a spade, which is
either red or black). In this way, the identification of color

and shading features could add robustness to both regular card
game recognition systems as well as other non-card-related
recognition systems (i.e. to identify items in a factory, suitcases
in an airport, etc.).

September 17, 2013

II. MATERIALS & METHODS

Below, we will first briefly explain how the game Set is
played. Then, we will mention our motivation for conducting
this particular image processing study using Set cards and
our specific research goals. Finally, we will detail how the
algorithm identifies not only the card borders but also the
specific features of the cards.

A. The Game

Set is a card game consisting of 81 cards, each of them
having 4 features with three different possibilities. Each com-
bination of features appears once and only once in the deck
(34 = 81). The features and their possible values are:

• Color: Red, Green, or Purple

• Amount: 1, 2, or 3

• Shape: Rhombus, Squiggly, or Oval

• Shading: Hollow, Striped, or Solid

To set up the game, twelve cards are placed, face-up, on the
table. Once all twelve cards have been laid out, the search for
”Sets” may begin. A ”Set” is defined as any given set (hence
the name of the game) of three cards which meet all of the
following requirements:

• They are all the same color, or each of them are three
different colors

• They all have the same amount, or they each have
three different amounts

• They are all the same shape, or each of them are three
different shapes

• They all have the same shading, or they each have
three different shadings

When a player finds a Set, he/she collects the three cards
that make up the Set, adding them to his/her pile of Sets.

Fig. 1. Set Game

These three cards are then replaced by three new cards from
the deck. This process continues until all cards have been dealt.
At the end of the game, when no cards are left in the deck,
the player who has found the most Sets is deemed the winner.
It is possible (but rare, 14:1 approximately) that in the twelve
cards laid out on the table, no Sets exist, in which case three
additional cards are laid out, making the total number of cards
fifteen.

B. Motivation and Goals

The rarity of not finding a Set is precisely what motivated
this image recognition study. At times, players spend large
amounts of time looking for Sets to no avail. A mobile
application with image recognition, however, could solve this
problem by allowing players to take a picture of the card lay-
out and see, instantaneously, if there are, in fact, any Sets. This
kind of technology could also be helpful for novice players
who are either still learning how to play or not sure if they
have found a Set or not.

In an attempt to use image recognition technology to
analyze photos of Set cards, we simulated a game of Set,
pausing to take pictures whenever cards were replaced. These
pictures were then individually analyzed using Matlab’s image
processing toolbox to identify the specific features of the cards.
The goal of this study consisted in identifying any and all Sets
in a given group of cards (in this case twelve), with the hope
of eventually using the same technology to create a mobile
“Set-recognizing” application.

C. Image Database

The experimental set-up consisted of a cell-phone with a
camera (an iPhone 4, which has a resolution of 5 Megapixels)
situated 50 cm above the ground and completely horizontal
thanks to a support system (Figure 2). The cards were placed
on a paper sheet, on which 12 parcels of 8 cm x 5 cm had
been previously drawn. Each card was placed into one parcel.

All pictures were taken in the proximity of a window with
natural light, and to compensate for the fact that the light only
came from one side, a lamp was placed and lit on the opposite
side. For the same reason, all pictures were taken in a short
period of time to ensure no changes in the natural lighting
condition.

A total of 25 photographs were taken for analysis. The
selection and removal process of cards for each photograph
was similar to that of a real game. More specifically, to

Fig. 2. Experimental Set Up

begin the simulation, we dealt out 12 random cards from
the top of the shuffled deck. After taking a picture of this
initial set-up, we manually found and removed one Set. These
cards were replaced with three new ones from the deck, and
another picture was taken. This process continued until no
cards remained in the deck.

It is important to mention, however, that once, no sets could
be found. In this instance, because we had limited the paper
stencil to 12 parcels, we could not add three more cards like in
a real game. Thus, we randomly selected three of the laid-out
cards and replaced them with three new cards from the deck
to continue the simulation.

D. Basic Transformations

Once all 25 photographs were taken, they were cropped
to eliminate unnecessary components for the analysis (in
this case, the background of the floor). Before analyzing the
features of the cards, we created an algorithm to perform
some basic transformations of the images to ensure that the
patterns would be recognizable. These basic transformations
include trimming the image, re-sizing it to a smaller size, and
transforming it into a black and white picture, as color is not
necessary for the identification of certain features.

The main purpose of this operation was to segment the
original picture into 12 fragments, each containing only one
card. Not only did this make feature classification easier,
but it also allowed the algorithm to run in parallel, which
ensured an optimized output in terms of speed in case more
than one execution thread is available, as then cards can be
processed individually in different threads speeding up the
process. Because the paper stencil maintained card location,
the coordinates used to cut the image were randomly extracted
from one of the 25 pictures and maintained throughout the rest
of the image analysis. Obviously, this solution would not be
possible with a mobile application, but a similar alignment
could be maintained on a mobile implementation with grids
projected on the screen during picture-taking to communicate
necessary adjustments. In this manner, the space between
cards, as well as the distance of the camera from the cards,

Fig. 3. Basic Transformations

Fig. 4. Detecting Amount

would remain rather uniform. In case the picture was not
taken horizontally, we could use the information about the
phone’s angle (extracted from the accelerometer) to correct
the perspective.

After performing these basic transformations, we decided
to address the problem of identifying card features one at a
time. More specifically, we adjusted the algorithm to detect
the four different features of the cards in the following order:
amount, shape, color, and shading.

E. Detecting Amount

In order to detect the amount feature, cards were first
converted into black and white images. The images were then
inverted and all enclosed figures were filled with white. Finally,
the noise and artifacts such as shadows were removed, as can
be seen in the bottom row of Figure 4. With this image,
we applied the function regionprops from MatLab’s Image
Toolbox, which returns a data struct containing statistical
information about objects, to detect the number of shapes in
each card. According to this function, the number of objects in
each card is simply the length of the returned data struct. An
object by this function is defined as an association of pixels
different from those connected in the background.

F. Detecting Shape

The same inverted black and white image that had been
treated for noise to recognize objects for amount detection was
also used for shape detection. In this case, however, instead
of further adapting the images, we had to further analyze
them. The key to detecting shape is the well-differentiated
surface area between the three possible objects (diamond, oval,

and squiggly). The surface area can be calculated by simply
counting the non-background pixels for one of the objects in
the image. The same function regionprops used previously for
amount detection also provides information about the area, so
we could directly use this information to classify the cards.
We also tried using other features such us eccentricity and
perimeter to classify shape, but they were not successful
because at least two of the three possible figures for each of
those features had a similar magnitude in the selected feature
space.

The parameter adjustments were experimented with using
only one image for each shape until no errors were observed.
Only then were they tested on and applied to the remaining
images in the database.

G. Detecting Color

The most difficult feature to measure due to the limited
capabilities of the smart-phone camera was the color. Different
approaches were tested with varying results. First, we tried
using the smart-phone’s flash to take the pictures, but this
produced not only saturated images but also images with
undesirable reflections. Then, we applied the CIELAB color
space, which partially removes the impact that lighting has
on pictures, approximating the human vision system . This
approach offered acceptable results but mis-classified a number
of the cards, so it was abandoned. Ultimately, we normalized
the RGB color, which offered the best performance. In order to
normalize the RGB color of the figures, we used the following
equations:

| Red |= Red
3
√
Red2 +Green2 + Purple2

(1)

| Green |= Green
3
√
Red2 +Green2 + Purple2

(2)

| Purple |= Purple
3
√

Red2 +Green2 + Purple2
(3)

An untouched image and its respective image after the
RGB normalization process can be seen in Figures 5 & 6,
respectively. In the normalized images, threshold values were
set for the RGB components, so that the features would be
forced into one of the three possible groups (red, green, or
purple).

H. Detecting Shading

In order to detect the last feature, the filling of the card, we
adapted gray-scale images of the cards. Similar to the color
detection algorithm, a number of different approaches were
attempted before finding the optimized solution, which is based
on edge detection.

The difference between a solid, striped, and hollow figure
is the number of borders, which can be detected by inverting
the image. More specifically, a solid figure has only one border,
a hollow one has two borders (one on the outside and another
on the inside), and a striped one has many borders. In order
to detect the edges of the figures, we performed the MatLab
function edge, using the roberts method with a threshold

Fig. 5. Original colored image

Fig. 6. Color normalized image

Fig. 7. Border detection of figures with three different shapes. The initial
gray-scale images can be seen above with their respective inverted images
below.

value of 0.05. Gray-scale images of three figures with distinct
shading as well as their respective inverted border-detection
images after applying the MatLab function can be seen in
Figure 7.

Fig. 8. Solved Set

I. Finding ”Sets”

Once the four features of the cards are successfully de-
tected, the implementation of the algorithm to detect any and
all Sets is quite straight-forward. The code, which is based on
the definition of a Set, is quite simple and requires no further
comment.

The algorithm runs through each image of the game
individually (each with 12 different cards laid out), applying
all of the previously mentioned image adaptions to detect
the four features and define the cards based on these. Then,
the algorithm detects all possible Sets, assigning one of eight
symbols (+, -, *, S, ?, 0, X, #) to any three cards that form
a Set. An example of a solved image (with all identified Sets
marked with matching symbols at the top of the cards) can be
seen in Figure 8.

III. RESULTS

In this section the results of the system are analyzed from
two points of view: 1. the number of correct classifications
that the system achieved, and 2. the improvement in execution
time when the algorithm was run in parallel.

A. Classification Accuracy

After processing all cards in the database (300) and de-
tecting all Sets, we compared the results of our algorithm
with those of an experienced human player. With this blind
comparison, our algorithm did not perform one single error
in terms of identifying Sets. Therefore, we can conclude the
success of our detection algorithm.

B. Parallel Computing Improvement

Using MatLab’s Parallel Computing toolbox (more specif-
ically, the function parfor that runs a for loop in the available
threads), the algorithm performed approximately 3.5 times
faster. We measured the classification time for five different
images with the function cputime, which minimizes the effect
of the operative system and other types of interference. The
mean, maximum, and minimum time for these five classifica-
tions using both serial and parallel computation are displayed
in Figure 9.

TABLE I. COMPUTATIONAL TIMES FOR SERIAL AND PARALLEL
EXECUTION

T1 (s) T2 (s) T3 (s) T4 (s) T5 (s) Mean ± SD (s)
Serial 0.72 0.67 0.68 0.67 0.74 0.69 ± 0.032

Parallel 0.36 0.19 0.13 0.13 0.15 0.19 ± 0.097

Fig. 9. Computing time comparison.

IV. DISCUSSION

In this work a complete system able to detect features on
cards, and effectively “play” a card game by finding Sets was
implemented. This shows the feasibility of developing mobile
applications that could solve logical puzzles (cards, chess, etc.)
relying on a limited quality photo. Such systems would also be
interesting for security and surveillance purposes. For example,
casinos, which invest large amounts of money in detecting
cheaters (players that are counting cards, etc.), could use a
system such as the one presented here to reliably detect the
cards on the table, as well as the chips with slight modifications
to the code. The system could also incorporate an algorithm
to automatically indicate when cheating patterns are detected
(for example, increasing the bet in blackjack as the card count
goes up) and set off an alarm.

The system reached the maximum performance for the
available data set, suggesting that certain aspects could be
pushed more towards the limits. Orientation of the cards seems
an obvious option but this modification is not likely to produce
different results as long as the cards remains in their parcels.
One aspect could be the light of the scene, and further studies
should investigate on this aspect

Because of the poor representation quality of the smart-
phone’s CCD, the least robust detectors in the system are
probably the color and shading ones, which both rely on
components of the RGB image. Little can be done to change
this limitation, as mobile phones have already been built to
rely on these RGB components. We came up with a number of
potential solutions as to how to neutralize this limitation and
correct the colors on the smart-phone image. First, we tried
to implement the use of the flash of the device. Unfortunately,
however, upon implementing this solution, we realized that the
saturation of the cards reflect light, making image recognition
quite difficult on the parts of the image with glare. Moreover,
thinking about a casino implementation, this solution of using
a flash camera is unlikely, as constant flashing at the tables
could bother/distract clients. The second solution we came up
with was to use a different color space, such as Lab, that
does not modify a and b components in different lighting
conditions. This option, however, did not work as well as
expected. For this reason, we decided to implement our third
solution: normalizing the colors (as explained in equations 1,

2 & 3 above) and adjusting the parameters for our particular
lighting condition, tweaking them until they allowed for the
biggest possible margins without producing any errors.

Regarding the segmentation of the image, it could be
argued that we only have the information for the segmentation
when working offline and with pictures taken in the same
conditions. However, it should be pointed out that the position
of the cards is not always the same: the only condition is that
only one card is placed in each of the boxes, and these boxes
could be made as big as needed. On a smart-phone application,
when it comes to taking the picture, a grid-like pattern could
appear over the image that is going to be taken, to ensure that
only one card fits into each of the boxes formed by the lines.
Similarly, in a casino, the dealer could be trained to place the
cards in the same place every time to respect the segmentation
margins. These two solutions would have the same results as
our paper stencil in terms of maintaining card separation and
size for segmentation.

V. CONCLUSION

This work shows the feasibility of an inexpensive system
based on a smart-phone camera to solve the Set card game.
With simple image processing techniques we were able to
achieve a classification accuracy performance of 100%, sug-
gesting that the presented work could lead to a system to
analyze different card games such as poker or blackjack.

REFERENCES

[1] Dan Brinks, Hugh White. Texas Holdem Hand Recognition and Analysis
[2] Paulo Martins, Luı́s Paulo Reis, Luı́s Teófilo. Poker Vision: Playing

Cards and Chips Identification Based on Image Processing
[3] C. Zheng, R. Green (2007). Playing Card Recognition Using Rotational

Invariant Template Matching Proceeding Image of Vision Computing
New Zealand 2007, pp. 276-281, Hamilton, New Zealand, December
2007.

[4] K. Zutis, J. Hoey, Whos Counting?: Real-time Blackjack Monitoring for
Card Counting Detection.

[5] Henrik Warne, SET Probabilities Revisited. 30 September, 2011. From
http://henrikwarne.com/2011/09/30/set-probabilities-revisited/.

http://henrikwarne.com/2011/09/30/set-probabilities-revisited/

	Introduction
	Materials & Methods
	The Game
	Motivation and Goals
	Image Database
	Basic Transformations
	Detecting Amount
	Detecting Shape
	Detecting Color
	Detecting Shading
	Finding ``Sets"

	Results
	Classification Accuracy
	Parallel Computing Improvement

	Discussion
	Conclusion
	References

